Automated microfluidic processing platform for multiplexed magnetic bead immunoassays.

نویسندگان

  • Lawrence A Sasso
  • Ian H Johnston
  • Mingde Zheng
  • Rohit K Gupte
  • Akif Ündar
  • Jeffrey D Zahn
چکیده

A microfluidic platform is presented which fully automates all incubation steps of a three-stage, multiplexed magnetic bead immunoassay, such as the Luminex® xMAP technology. Magnetic actuation is used to transfer the microbeads between co-infused adjacent laminar flow streams to transport the beads into and out of incubation and wash solutions, with extended incubation channels to allow sufficient bead incubation times (1-30 min, commonly 5 min per stage) to enable high-sensitivity. The serial incubation steps of the immunoassay are completed in succession within the device with no operator interaction, and the continuous flow operation with magnetic bead transfer defines the incubation sequencing requiring no external fluidic controls beyond syringe pump infusion. The binding kinetics of the assay is empirically characterized to determine the required incubation times for specific assay sensitivities in the range 1 pg/ml to 100 ng/ml. By using a Luminex® xMAP duplex assay, concurrent detection of IL-6 and TNF-α was demonstrated on-chip with a detection range 10 pg/ml to 1 ng/ml. This technology enables rapid automation of magnetic microbead assays, and has the potential to perform continuous concentration monitoring.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform.

A digital microfluidic platform for performing heterogeneous sandwich immunoassays based on efficient handling of magnetic beads is presented in this paper. This approach is based on manipulation of discrete droplets of samples and reagents using electrowetting without the need for channels where the droplets are free to move laterally. Droplet-based manipulation of magnetic beads therefore doe...

متن کامل

Continuous microfluidic DNA extraction using phase-transfer magnetophoresis.

This paper reports a novel microfluidic-chip based platform using "phase-transfer magnetophoresis" enabling continuous biomolecule processing. As an example we demonstrate for the first time continuous DNA extraction from cell lysate on a microfluidic chip. After mixing bacterial Escherichia coli culture with superparamagnetic bead suspension, lysis and binding buffers, DNA is released from cel...

متن کامل

Automated digital microfluidic platform for magnetic-particle-based immunoassays with optimization by design of experiments.

We introduce an automated digital microfluidic (DMF) platform capable of performing immunoassays from sample to analysis with minimal manual intervention. This platform features (a) a 90 Pogo pin interface for digital microfluidic control, (b) an integrated (and motorized) photomultiplier tube for chemiluminescent detection, and (c) a magnetic lens assembly which focuses magnetic fields into a ...

متن کامل

Microfluidic Methods for Protein Microarrays

Protein microarray technology has an enormous potential for in vitro diagnostics (IVD). Miniaturized and parallelized immunoassays are powerful tools to measure dozens of parameters from minute amounts of sample, whilst only requiring small amounts of reagent. Protein microarrays have become well-established research tools in basic and applied research and the first diagnostic products are alre...

متن کامل

µFBI: A Microfluidic Bead-Based Immunoassay for Multiplexed Detection of Proteins from a µL Sample Volume

BACKGROUND Over the last ten years, miniaturized multiplexed immunoassays have become robust, reliable research tools that enable researchers to simultaneously determine a multitude of parameters. Among the numerous analytical protein arrays available, bead-based assay systems have evolved into a key technology that enables the quantitative protein profiling of biological samples whilst requiri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microfluidics and nanofluidics

دوره 13 4  شماره 

صفحات  -

تاریخ انتشار 2012